文章摘要
栾生,仲伟鹏,谭建,罗坤,陈宝龙,孔杰.凡纳滨对虾收获体质量大规模家系选择效果的计算机模拟分析[J].水产学报,2018,42(10):1582~1588
凡纳滨对虾收获体质量大规模家系选择效果的计算机模拟分析
Effect of large-scale family selection on body weight of Litopenaeus vannamei by computer simulation
投稿时间:2017-11-20  修订日期:2018-01-31
DOI:10.11964/jfc.20171111060
中文关键词: 凡纳滨对虾  家系内选择  家系间选择  育种值  近交系数
英文关键词: Litopenaeus vannamei  within-family selection  between-family selection  breeding value  inbreeding coefficient
基金项目:“一带一路”沿线热带国家水产养殖科技创新合作项目;农业部“九四八”滚动项目(2016-X39);中国水产科学研究院基本业务费重点项目(2016HY-ZD04);国家自然科学基金(31572616);泰山学者种业人才团队项目
作者单位E-mail
栾生 中国水产科学研究院黄海水产研究所, 农业部海洋渔业资源可持续利用重点开放实验室, 山东 青岛 266071
青岛海洋科学与技术国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266300 
 
仲伟鹏 上海海洋大学水产与生命学院, 上海 201306  
谭建 中国水产科学研究院黄海水产研究所, 农业部海洋渔业资源可持续利用重点开放实验室, 山东 青岛 266071
青岛海洋科学与技术国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266300 
 
罗坤 中国水产科学研究院黄海水产研究所, 农业部海洋渔业资源可持续利用重点开放实验室, 山东 青岛 266071
青岛海洋科学与技术国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266300 
 
陈宝龙 中国水产科学研究院黄海水产研究所, 农业部海洋渔业资源可持续利用重点开放实验室, 山东 青岛 266071
青岛海洋科学与技术国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266300 
 
孔杰 中国水产科学研究院黄海水产研究所, 农业部海洋渔业资源可持续利用重点开放实验室, 山东 青岛 266071
青岛海洋科学与技术国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266300 
kongjie@ysfri.ac.cn 
摘要点击次数: 940
全文下载次数: 965
中文摘要:
      为进一步补充凡纳滨对虾核心育种群收获体质量的遗传进展工作,设计了包括10个家系数量梯度(100~1 000)和11个家系内测试个体数梯度(100~5 000)的育种方案,利用计算机模拟技术,执行家系间(留种50%家系)和家系内选择(留种1雄、2雌),连续选择19次,比较核心育种群与扩繁群收获体质量育种值和群体近交系数的变化,为进一步优化大规模家系选育提供基础参数。结果显示,与对照方案(家系数量100个、家系内测试个体数100个、体质量遗传力0.35)相比,增加参与测试的家系内个体数,选择强度不断提高,核心育种群收获体质量育种值均值增加了48%(62.75~92.87 g),但增加幅度在不断降低(100~2 500:40.60%;2 500~5 000:7.40%);核心育种群收获体质量育种值标准差降低了2.90%(1.38~1.34 g)。受限于选择强度,随着家系数量的扩大,核心育种群收获体质量育种值仅增加了1.88%(62.75~63.93 g),育种值标准差增加了4.35%。扩繁群收获体质量育种值随家系规模变化的趋势同核心育种群,但在家系水平上的提高幅度更大(63.63~65.48 g,2.91%)。随着家系数量的增加,核心育种群的近交系数降低了90.32%(0.093~0.009),下降幅度不断减少(100~500:79.57%;500~1 000:10.75%);家系数量为200个的育种群体,连续选择19次后,每代平均近交率为0.25%。增加参与测试的家系内个体数,不影响核心育种群的近交水平。研究表明,扩大家系内测试个体数,可以进一步提高核心育种群与扩繁群收获体质量的遗传进展。
英文摘要:
      To test change of genetic gain for body weight, we designed selection schemes which included 10 levels of family number (100–1 000) and 11 levels of family size (100–5 000). By using computer simulation technology, breeding values and inbreeding coefficients of the nucleus breeding and multiplication populations from different simulation schemes were compared after performing between-family (percentage retained: 50%) and within-family selections (1 male and 2 females selected per family) of 19 generations. The mean and standard deviation for body weight were set at 18.41 g and 3.24 g, respectively. Three levels of heritability (0.1, 0.35, 0.6) were included in the simulation. This study will provide basic parameters to optimize the selective breeding program based on large-scale families. Compared with the control scheme with parameters including 100 families, 100 individuals tested per family, and heritability of 0.35, breeding values of body weight for the nucleus population increased by 48% (62.75–92.87 g) with the increase of family size (100 to 5 000) due to higher selection intensity, but increasing extent presented downward trend (100–2 500: 40.60%; 2 500–5 000: 7.40%); standard deviation of breeding values decreased by 2.90% (1.38–1.34 g) when family size increased. Breeding values of body weight for the nucleus breeding population increased by 1.88% (62.75–63.93 g) and the standard deviation of breeding value increased by 4.35% when increasing family number due to low selection intensity. Breeding values of harvest weight for the multiplication population had the same increase trend with those of the nucleus population, but increasing extent was more than that in the nucleus population on family level (63.63–65.48 g, 2.91%). Inbreeding coefficients of the nucleus breeding population decreased by 90.32% (0.093–0.009) with increase of family number, but decline rate presented downward trend (100–500: 79.57%; 500–1 000: 10.75%). It did not affect inbreeding level of the nucleus population when increasing family size. In summary, it will further improve the genetic gain for body weight of nucleus breeding population and multiplication population if there is increase of family size. The inbreeding level (inbreeding rate 0.25%) is below the safety threshold (<0.5%) when the breeding population consists of more than 200 families. Therefore, the main purpose of increasing the number of family is to reserve more genetic variation and establish multiple breeding lines for different traits.
HTML   查看全文   下载PDF阅读器
关闭

手机扫一扫看